Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption.

نویسندگان

  • Sophie Trouillet-Assant
  • Marlène Gallet
  • Pauline Nauroy
  • Jean-Philippe Rasigade
  • Sacha Flammier
  • Peggy Parroche
  • Jacqueline Marvel
  • Tristan Ferry
  • Francois Vandenesch
  • Pierre Jurdic
  • Frederic Laurent
چکیده

BACKGROUND Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored. METHODS We developed an in vitro infection model of primary murine osteoclasts to study the direct impact of live S. aureus on osteoclastogenesis and osteoclast resorption activity. RESULTS Staphylococcal infection of bone marrow-derived osteoclast precursors induced their differentiation into activated macrophages that actively secreted proinflammatory cytokines. These cytokines enhanced the bone resorption capacity of uninfected mature osteoclasts and promoted osteoclastogenesis of the uninfected precursors at the site of infection. Moreover, infection of mature osteoclasts by live S. aureus directly enhanced their ability to resorb bone by promoting cellular fusion. CONCLUSIONS Our results highlighted two complementary mechanisms involved in bone loss during bone and joint infection, suggesting that osteoclasts could be a pivotal target for limiting bone destruction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staphylococcus Aureus Induces Osteoclastogenesis via the NF-κB Signaling Pathway

BACKGROUND Osteomyelitis is one of the refractory diseases encountered in orthopedics, while Staphylococcus aureus (S. aureus) is the most common causative organism in osteomyelitis. However, the precise mechanisms underlying the bone loss caused by S. aureus infection have not been well defined. Here, we investigated the effect of S. aureus on osteoclast differentiation and the probable molecu...

متن کامل

Staphylococcus aureus Protein A induces osteoclastogenesis via the NF-κB signaling pathway

Staphylococcus aureus (S. aureus) is the most common organism causing osteomyelitis, and Staphylococcus aureus protein A (SpA) is an important virulence factor anchored in its cell wall. However, the precise mechanisms underlying the bone loss caused by SpA have not been well understood. The present study aimed to investigate the effect of SpA on osteoclast differentiation, and the probable mec...

متن کامل

Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing...

متن کامل

Live imaging of osteoclast inhibition by bisphosphonates in a medaka osteoporosis model

Osteoclasts are bone-resorbing cells derived from the monocyte/macrophage lineage. Excess osteoclast activity leads to reduced bone mineral density, a hallmark of diseases such as osteoporosis. Processes that regulate osteoclast activity are therefore targeted in current osteoporosis therapies. To identify and characterize drugs for treatment of bone diseases, suitable in vivo models are needed...

متن کامل

Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro

BACKGROUND Osteomyelitis is a severe and often debilitating disease characterized by inflammatory destruction of bone. Despite treatment, chronic infection often develops which is associated with increased rates of treatment failure, delayed osseous-union, and extremity amputation. Within affected bone, bacteria exist as biofilms, however the impact of biofilms on osteoblasts during disease are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 211 4  شماره 

صفحات  -

تاریخ انتشار 2015